
1

A SAS® Programmer's View of the SAS Supervisor
Ian Whitlock, Westat Inc.

Abstract

This tutorial answers questions like:

• As a DATA step programmer, what do I need to know
about the SAS supervisor and why?

• How does the SAS supervisor process DATA step code?

• How does a SAS MERGE work?

• What about engines, indexing, and views?

• What happens when my DATA step code contains macro
variables?

• What if my DATA step invokes a macro or is contained in
a macro?

For many years Donald Henderson or one of his colleagues gave a
tutorial about the SAS Supervisor (SUGI 8, and 12 - 17). This
tutorial builds on those earlier articles and adds the experience of the
author.

Introduction

A basic SAS program consists of DATA steps and procedure steps.
In both cases machine code is executed. The main difference is
that the machine code already exists for procedures so that only the
parsing of a little control information is needed. The DATA step
language provides the flexibility needed to read and manipulate
arbitrary data structures in ad hoc ways.

The SAS supervisor manages step processing. We will be mainly
interested in how it manages the DATA step, but first we will take a
quick look at the consequences of having steps. Finally we will take
a quick look at how the macro facility fits in.

Why should one be interested in how the supervisor works? Such
knowledge gives you better control over the language, i.e. the ability
to make a program do exactly what you want because you have a
better idea about what is happening and when it is happening.

Step Processing

At a very early point in the development of the SAS System, a
fundamental decision was made to compile and execute each step
before the next is considered. This shrewd decision has significant
consequences for the SAS programmer:

1. Each step is an executable image optimized for fast
execution.

2. The executable image is by default thrown away; hence
the source code is faithful to the action.

3. Information is basically passed from one step to another
via files; hence SAS is primarily an I/O bound language.
This means the programmer should, consistent with

clarity, minimize the number of steps in the program
design.

4. Almost by definition, SAS is very modular, amenable to
structured programming techniques and data flow
diagrams.

5. Since costly early steps may execute only to have the
program fail on a mistake in a later step, the programmer
must bear the responsibility for adequate testing.

6. Since later steps need not even exist when earlier steps
are executed, the earlier steps can determine what
program is needed and then write it. Consequently even
batch programs can have an interactive flavor to them.

A common request on the software ballot is to provide true syntax
checking. Although SI has said they will provide it, I don’t see how
they can without changing the nature of the language. Consider the
step:

data w ;
 retain x ‘abc’ ;
 set data1 ;
run ;

This code is syntactically correct if DATA1 does not contain a
numeric variable X, but it is incorrect otherwise. Usually one would
expect a syntax checker to catch errors in variable type. Now
suppose that the step creating DATA1 was included from code
written by a previous step. How can SAS possibly have the needed
information without executing far enough to create the needed code?
This is one example where the power of the SAS system design
makes it hard to implement what looks like a standard requirement
for programming languages.

The Basic DATA Step Loop

Each DATA step requiring I/O (really we mean input) is built with an
implied loop. Hence the common structure for a DATA step is
initialization, read a record, do something with the data, and write out
the transformed data. The automatic variable _N_ counts iterations
of this implied loop. It is always available in a DATA step. Typically
N is used in code where variables must be initialized. For
example:

data _null_ ;
 if _n_= 1 then set stats;
 set sales ;

run ;

Perhaps the first question to ask is, “What stops the looping process
and where does it stop?” By default the process stops when an
input request cannot be satisfied; hence a DATA step typically stops
with a SET, MERGE, UPDATE, MODIFY or INPUT statement. Not
on the last record, but the next time around the loop, when the
statement is to execute and it cannot. For the programmer this
means the best place to test for end-of-file is not after the I/O

2

statement, but before it! When the test for end-of-file is placed after
the reading statement, there is a danger that some subsetting code
will cause the test to never be executed. The following code works
even when the REGION on the last record is not “WEST”.

data _null_ ;
 if eof then put total= ;
 set sales end = eof ;
 if region = ‘WEST’ ;
 total + sales ;
run ;

The STOP and ABORT statements can be used to explicitly halt a
DATA step, either because some condition is reached or because
the normal default cannot operate. For example, when one uses a
SET statement with the POINT option, the end-of-file is never set,
consequently one must take explicit action or depend on the step
stopping at some other I/O statement. The DO-loop below would
execute over and over until it runs out of space or time without the
crucial STOP statement. Since input is done in every iteration of the
implied loop, there is no reason to stop the implied loop.

data sample (drop = i) ;
 do i = 1 to 100 ;
 ptr = int(ranuni(0)*nobs+1);
 set universe point = ptr
 nobs = nobs ;
 end ;
 stop ;
run ;

On the other hand no STOP is needed below, since the DATA step
will stop when it runs out of records from LOOKUP.

data found ;
 set lookup ;
 /* ptr is variable in lookup */
 set answers point = ptr ;
run ;

What if there is no input? Then processing simply stops at the
bottom of the step as if there were no implied loop. You might try to
trick the compiler with

data ;
 if 0 then set dataset ;
run ;

The looping operation is set up because of the SET statement.
Since no input statement is executed, it cannot run out of data, but
the step will stop at the bottom of the first iteration of the loop with
the message

NOTE: DATA STEP stopped due to looping.

DROP, KEEP, LABEL, and RENAME

Now let’s look more carefully at the compile process and in particular
at compile time directives. These are non-executable statements
that tell the compiler how to set up something. DROP, KEEP,
LABEL, and RENAME all give instructions about the output SAS
data sets. They do not give information about the variables during
execution of the DATA step. They may occur anywhere in the step
without changing anything that is done. The drop and keep variables
may be repeated. Why is this important? A macro to generate
DATA step statements may need to create and drop variables. The

macro may be invoked several times because the repetition of the
drop statement doesn’t matter.

If a variable is both kept and dropped, the drop takes precedence,
and a warning is issued. If the same variable is renamed or labeled
more than once, the last one rules. When a rename output data set
option is used with a RENAME statement for the same variable, the
RENAME statement is done first and the variable is no longer
available for renaming. You can test your understanding with the
following code.

/* 1 */ data w (rename=(z=q));
/* 2 */ x = 1 ;
/* 3 */ y = 'a' ;
/* 4 */ rename x = u ;
/* 5 */ rename x = y ;
/* 6 */ rename y = z ;
/* 7 */ run ;
/* 8 */ proc print data = w ;
/* 9 */ run ;

The resulting values are Y = 1 and Q = ‘a’. X is renamed to Y since
line 5 comes after line 4. Y is renamed first to Z by line 6 and then
later to Q by the output data set option in line 1. Note that the
compiler applies the output data set option RENAME last even
though it occurs first in the physical order of the code. Any KEEP
and DROP options refer to the name before use of the RENAME
option, but after application of RENAME statements.

Note that lines 5 and 6 imply that

rename x = y y = x ;

should interchange the two variable names. It does in a DATA step,
but it results in an error message in PROC DATASETS saying that
Y and X already exist.

How might one make use of this information? A common question
on SAS-L is “I have character variable X on a SAS data set but I
want it to be numeric with the same name. How can this be
accomplished?” Assume W is a data set with a character variable X
which has numeral values. One possibility is

data w (drop = temp) ;
 set w ;
 temp = input (x, best12.) ;
 rename x = temp ;
 rename temp = x ;
run ;

Usually DATA step code, using pure data set options, is shorter,
simpler and clearer, since the moment of action is spelled out.

data w (drop = temp) ;
 set w (rename=(x=temp)) ;
 x = input (temp, best12.);
run ;

The Order of Variables

The first explicit occurrence of a variable is important, because with
the exceptions of DROP, KEEP, RENAME, LABEL, and possibly
RETAIN, this occurrence will determine whether the variable is
character or numeric. When is the length of a variable determined?
Character variables are treated differently from numeric because

3

numeric variables are always manipulated as 8 byte floating point
variables during execution of the DATA step.

Since numeric lengths are not applicable to the DATA step
processing (only the output data set), numeric lengths are
determined by the last LENGTH or ATTRIB statement to assign a
length. An ARRAY statement can also assign numeric lengths, but
only when there is no relevant LENGTH or ATTRIB statement
overruling it.

On the other hand, character data lengths are determined by the first
statement that allows specification of a length. In particular
assignments, formats, and informats all determine character lengths
in addition to the explicit length specifiers LENGTH and ATTRIB.
For character variables the length specified in an ARRAY statement
takes precedent when it comes first. Any attempt to change a
character variables length results in a warning.

Even FORMAT statements can determine the length of character
variables when they occur first. For example,

format c $myfmt. ;

will determine that C has the length of the longest label in $MYFMT.
This does not make too much sense; hence it is best to avoid having
a FORMAT statement announce that a variable will be character.

When a variable is known to be character and the length cannot be
determined, a default is chosen. Hence, the length of character data
is always determined by the first statement determining that the
variable is character. A default length 8 or 200 is usually chosen
when no better information is available. For example, list input
causes character variables of length of 8 and

c = symget (‘macvar’) ;

determines a length of 200. Unfortunately one cannot depend on
reason because the INFILE option FILENAME= defaults to a length
of 8. Some functions determine other lengths, but not necessarily in
a consistent fashion. For example

c = substr (char , 1 , 1) ;

will cause C to have the same length as CHAR, but

c = put (char , $agecat1.) ;

will cause C to have a length of 1. The difference is explained by the
fact that the second argument of the PUT function is code and
known to determine a length of 1 at compile time. Had the "1" not
been present, then the length would be determined by the longest
label of the format, consistent with the format determination of length
given above..

On the other hand, the third argument of SUBSTR is a DATA step
value, in principle could be any length up to the length of CHAR at
execution time. Thus the third argument of SUBSTR cannot control
the length even when a constant.

One might expect that

call vname (var , name) ;

will determine NAME as a character variable, but that is not true. It
will be numeric by default. Probably function and subroutine
argument types never determine the type of the corresponding
variable.

In review, it is impossible to determine that a variable is character
without at the same time knowing its memory size requirements.
This means that the compiler knows how to arrange storage for a
variable as soon as it knows whether the variable is numeric or
character. Moreover, this determination can be made by the first
mention of a variable (with the exception of DROP, KEEP,
RENAME, LABEL and sometimes RETAIN).

As soon as a variable is determined to be character or numeric, it
can be assigned a position in the logical Program Data Vector
(PDV). This order is important because it determines the order in
which variables are stored on output data sets. It is also important
within the DATA step when using the notation “firstvar -- lastvar“ to
avoid writing a long list of variable names. In particular, this is the
default order that many procedures use.

The other compile time directives ARRAY, ATTRIB, FORMAT,
INFORMAT, LENGTH, and sometimes RETAIN all allow one to
distinguish numeric from character, hence they all can place a
variable in the logical PDV. Their position in the code may not be
important for their intended purpose, but it can be crucial in
determining the logical PDV. (Prior to Version 6, the PDV was
actually a contiguous area in memory where the variables were
stored during DATA step manipulation. It still plays an important
role as a logical tool for organizing what happens during DATA step
processing.) All references below to the PDV are really the logical
PDV.

RETAIN is a peculiar exception in that it may not provide the ability
to determine the data type, but it can still determine the position in
the PDV. For example,

retain var /* no value */ ;

does not determine whether VAR is numeric or character. But when
it appears before other statements referencing the variable VAR,
(other than the standard exceptions DROP, KEEP, RENAME, and
LABEL), it does determine the position of VAR in the PDV,
whenever VAR has any position in the PDV. If VAR does not
appear anywhere else in a statement in the step, other than the
standard exceptions, then VAR will not be in the PDV, and hence
not on any output data sets. These facts can be demonstrated with
the code:

data w ;
 retain x ;
 y = 1 ;
 put _all_ ;
run ;

Now X is not written to the SAS log and it does not appear in the
contents of the data set W. On the other hand, if VAR does appear
elsewhere in the DATA step, then the first occurrence determines
the variable type, but not its position in the PDV. This can be seen
by assigning X a value (character or numeric) just before the PUT
statement in the above DATA step code.

Another common question on SAS-L is how can one reorder the
variables of a SAS data set. From the knowledge above you can see
the simplest answer is

data out_data_set ;
 retain order_you_want ;
 set input_data_set ;
run ;

4

Although SET, MERGE, UPDATE, and MODIFY statements may
not explicitly name any variable they do implicitly name all variables
in the associated SAS data sets, which are not ruled out by a
DROP= or KEEP= data set option. (Note that this means each SAS
data set named in a DATA step must exist and be available to the
DATA step compiler.) Thus for a complete determination of the
order in the logical PDV one must also consider the placement in the
DATA step of the above I/O statements.

Note that DROP= and KEEP= options are preferable to DROP and
KEEP statements precisely because they control what goes into the
PDV instead of what is transferred to output buffers. A smaller PDV
means a faster executing DATA step, and less chance of a variable
conflict in the current or later DATA steps.

Finally we must consider the SAS statements that ask for the
system creation of variables (usually known as automatic variables).
These variables are placed in the logical PDV at the point the DATA
step compiler encounters the statement, unless they have been
mentioned before in another statement. For example,

set dataset end = eof ;
by id ;

requests three automatic variables EOF, FIRST.ID, and LAST.ID.
Each will be added to the PDV as the compiler reads the
corresponding statement. In the above example, EOF will come
first, followed by the variables on DATASET, and then FIRST.ID
and LAST.ID. The variables _ERROR_ and _N_ are always added
at the end of the PDV. You should now be able to read any SAS
data step and write the variables in the PDV in the correct order.
How can you be sure of the order on the PDV? Add

put _all_ ;

to your DATA step. (The keyword _ALL_ in this case refers to the
PDV at the time of execution after it is completed, not as it exists at
this point in compilation. In contrast, RETAIN _ALL_ and ARRAY
A (*) _ALL_ refer to the PDV at their point of compilation.) The
variables are always written in PDV order at the point that the PUT
statement executes. Thus you can also get their values at any point
during execution after the first initialization set up by the supervisor.
Some of the variables may not be missing because they were
initialized during compile time.

An important example is given by

data _null_ ;
 call symput (‘nobs’,
 left(put(nobs,best12.))) ;
 stop ;
 set test nobs = nobs ;
run ;

It is correct to refer to the variable NOBS in the CALL statement
because is was assigned at compile time when the DATA step
compiler read the SET statement and looked at the directory of
TEST. There is a STOP in front of the SET statement because we
do not wish to read any observations from TEST. The purpose of
this step is to create a macro variable NOBS holding the number of
observations in TEST. (This code will not produce a correct result
when observations have been “deleted” from TEST without
physically removing them, thus the interest in the code is more
theoretical than practical. Today the problem is better solved with
PROC SQL.)

Initialization of Variables

Prior to Version 6 the supervisor did the initialization to missing at
the top of each iteration of the DATA step, and it was relatively slow
because the variables were processed as stored in the PDV. With
Version 6 the variables are actually stored in four separate blocks -
character versus numeric, need to initialize versus no need. Now
the supervisor generates code to initialize a block at a time and it is
part of the execution module as is the implied loop. Hence the
looping and initialization are very fast and there is little need on
efficiency grounds for programmers to avoid either.

We still have not determined which variables are initialized once at
the beginning of the DATA step and which are initialized to missing
at the beginning of every loop of the step. Automatic variables,
variables from SAS data sets, and variables that appear in RETAIN
statements are initialized once. Some variables are initialized to non-
missing values. For example,

• _N_ is set to 1,

• _ERROR_ is set to 0,

• the END= variable is set to 1 if the file is empty and 0
otherwise,

• the NOBS= variable is set to the number of records in
the file when this number is known,

• the LAST. and FIRST. variables created because of
the BY statement are set to 1, and 0 otherwise,

• variables which appear in a RETAIN statement
assigning values are initialized to their corresponding
value, and

• the remaining user variables are initialized to missing.

If a variable is not automatic, does not come from a SAS data set,
and does not appear in a RETAIN statement, then it will be initialized
to missing at the beginning of each loop of the DATA step. There is
one exception the statement

RETAIN ;

anywhere in the DATA step means that only the first initialization will
be done. The RETAIN statement is often confusing because it
really means initialize once; hence, values are retained until
changed; it does not mean that values are constant. Automatic
variables can be automatically changed during a loop of the DATA
step. For example,

• _ERROR_ is set to 1 when an execution time error
occurs,

• FIRST. variables are set to 1 when the relevant BY-
group begins and 0 on the next record, and

• the END= variable is set to 1 when the SET, the last
record is executed.

For completeness temporary arrays should be discussed. Consider

array a (10000) _temporary_ ;

This statement creates 10,000 contiguous numeric storage units in
yet another area for variables. They are not part of the logical PDV
and they have no names. They are initialized once to missing unless
assigned in the ARRAY statement. One can reference the elements
only with array notation, which is very fast compared with the
ordinary SAS arrays because the storage is contiguous.

5

Since they have no names, they do not go on any output file.

In Version 6, the BY statement is local to the previous SET,
MERGE, MODIFY, or UPDATE. This change is important for
DATA steps like the following.

data totpop ;
 if _n_ = 1 then set totals ;
 merge pop1 pop2
 by state ;
 pctpop = pop / totalpop ;
run ;

In Version 5 execution of this code would result in the message that
STATE is not on the data set TOTALS. (In a similar manner,
WHERE statements are local to the previous input statement in
Version 6.

Now let’s look at a simple merge in detail using the logical PDV as a
tool to understand what is happening at key points in the DATA step.

Consider data sets ONE and TWO:

ONEONE TWOTWO
K A K B
1 x 1 r
2 y 3 s
4 z 4 t

4 u
4 v

and the code:

data merge ;
 before: put ‘before: ‘ _all_;
 merge one two ;
 by k ;
 if b = ‘u’ then a = ‘?’ ;
 after: put ‘after: ‘ _all_ ;
run ;

The code produces the PDV time line shown below. Each row
corresponds to the state of the PDV at the time the PUT statement

shown on the right is executed. Hence there are two rows for each
iteration of the loop except the last one, which ends with the MERGE
statement.

Note the missing values corresponding to the variables coming from
the data sets in the first row. This is due to the one time initialization
of retained variables. Note the 1’s for FIRST.K and LAST.K in the
first row are because a BY statement is present not because K=1
uniquely in both data sets. Also note that both the SAS data set
variables and the automatic variables FIRST.K and LAST.K are
retained. For example, the first row with _N_ = 4 still has LAST.K =
1. It is not changed until the SET statement is processed. In
contrast _ERROR_ and _N_ are assigned at the beginning of each
iteration of the loop. One could easily test this fact by incrementing
N and _ERROR_. For example:

data _null_ ;
 put 'TOP: _all_ ;
 input ;
 n + 7 ;
 _error + (-1) ;
cards ;
1
2
3
;

Are _N_ and _ERROR_ retained? I expect so, but it doesn't matter
because these values are assigned at the top of the loop.

SAVEA is retained and not changed, one now finds that A returns to
the original value after modification.

data merge (drop = savea) ;
 before: put ‘before: ‘ _all_;
 merge one (rename = (a = savea))
 two ;
 by k ;
 if b = ‘u’ then a = ‘?’ ;
 else a = savea ;
 after: put ‘after: ‘ _all_ ;
run ;

K A B FIRST.K LAST.K _ERROR_ _N_
. 1 1 0 1 before
1 x r 1 1 0 1 after
1 x r 1 1 0 2 before
2 y 1 1 0 2 after
2 y 1 1 0 3 before
3 s 1 1 0 3 after
3 s 1 1 0 4 before
4 z t 1 0 0 4 after
4 z t 1 0 0 5 before
4 ? u 0 0 0 5 after
4 ? u 0 0 0 6 before
4 ? v 0 1 0 6 after
4 ? v 0 1 0 7 before

PDV - Time Line for the above DATA step.

6

What happens when both sets ONE and TWO also contain a
variable, say X, which is not part of the BY-group? If the value of X
is contributed by both sets then the one on the right wins the first
time and it depends on which set has multiple records after that.
Let's assume as above that ONE contains at most one record per
BY-group and TWO may contain multiple records per BY-group.
For

merge one two ;
by k ;

TWO contributes the value for X unless there are no records in
TWO matching the BY-group. Now reverse the positions of ONE
and TWO.

merge two one ;
by k ;

Here ONE contributes the value of X on the first record of each BY-
group for which it has a match, but TWO contributes the value of X
for any remaining records of the BY-group. Since it is very rare that
one need actually have a common variable not in BY-list, I would
suggest that one should use KEEP= or DROP= options to eliminate
the possibility. (If it seems necessary to have a common variable not
in the BY-list, then probably UPDATE or MODIFY is more
appropriate than MERGE.) When this advice is followed, the code
is more stable and clearer, so it is worth the extra effort.

When are the IN= variables set in a merge? They are set every time
a record is read from the corresponding file. But one should
remember that records are read only once. When a one-to-many
merge is performed, the IN= variables for the singleton records is
assigned once at the beginning of each BY group and retained. In a
many-to-many merge (rather unusual) one often wants to know that
two new corresponding records came in to the PDV. This can be
done by resetting the IN= variables.

data pairs oddballs ;
 many1 = 0 ;
 many2 = 0 ;
 merge many1 (in = many1)
 many2 (in = many2) ;
 by partkey ;
 if many1 and many2 then
 output pairs ;
 else
 output oddballs ;
run ;

When first encountered, one is often surprised that the user can
change an automatic variable. Actually automatic variables are not
used by the system; they are only for the user and may be modified
in any way the user chooses. As hinted in a previous example, one
can even change _N_, but of course at the top of each implied loop
the system will set it equal to the system’s counter. The most
dramatic example that I know of is

data check ;
 set something ;
 If _n_ = 1 then first.x = 5 ;
 put first.x= ;
run ;

Note there is no BY statement, and X need be not a variable in
SOMETHING. Even without a BY statement FIRST.X is an
automatic variable, hence it will be retained and dropped. It was
initialized to 0 because there was no BY statement, changed to 5 in

the third line, and it remains that way because the variable is
retained.

I/O Engines

In Version 6 SAS data is accessed via an I/O engine. The engine is
chosen by a part of the SAS supervisor called the I/O engine
supervisor. This means that the I/O is no longer handled directly by
the SAS supervisor. For you it means that many different structures
can be read as if they were SAS data sets, since the appropriate
engine knows how to make the data appear in SAS format. For the
Institute it means that they can more easily change the underlying
structure of SAS data sets.

Indexes

SAS data sets may be indexed by one or a combination of SAS data
set variables, by using either the INDEX CREATE statement in
PROC DATASETS, or the CREATE INDEX statement in PROC
SQL, or the (output) data set option INDEX. A special index file is
created giving index values and the locations of each value. The
value/location pairs are stored in a B-tree structure that enables the
engine to perform a binary search for the associated record. When
the observations are to be read as indexed data, the index engine is
chosen by the supervisor.

The request for using an index may be explicit as in

set mydata key= index / unique;

or it may be implicit when a WHERE or BY statement is used. For
the implicit cases the choice algorithm is quite complex.

An index is eligible for BY processing when

1. There is no NOTSORTED or DESCENDING in the
BY statement.

2. An initial list of variable(s) in the BY statement

agrees with the complete list variable(s) in a
composite (or regular) index and that index was not
created with the NOMISS option.

An index is eligible for WHERE processing when

1. The WHERE statement can be broken into two parts
such that the first part consists of conditions of the
form

 variable op constant

 or
 constant op variable

 joined by AND’s where the set of variables matches an initial

list of variables in the index, and, either the two parts
can be joined by an AND, or the second part is empty.
For example, an index on X could be used with the
WHERE statement

 where x > 1 and y = 2 ;

 since the second part is joined by an AND. On the other

hand, the WHERE statement below could not make
use of the index on X.

 where x > 1 or y =2 ;

7

2. The conditions on the variables in the first part of the

WHERE do not involve missing values when the index
was made with the NOMISS option. For example, the
WHERE statement

 where x < 1

could not involve an index including X with the
NOMISS option, since missing is a potential value for X
that would not be read using the index.

The eligible set of indices is reduced as follows:

• If both BY and WHERE statements are present form
the intersection of the two eligible sets. If non-empty
this is the eligible set, otherwise take the set
corresponding to the BY statement.

• If there is only a BY or a WHERE statement, then the

eligible set of indices is the eligible set for that
statement.

The index is now chosen as follows:

1. If there is only one eligible index, use it.

2. If a BY statement is present, use the index with the

most variables.

3. Otherwise, use the index which will select the smallest

subset of data assuming a uniform distribution of
values.

The competition between BY and WHERE is interesting. Consider

options msglevel=i ;
data w (index = (x y z)) ;
 do x = 1 to 100 ;
 do y = 1 to 5 ;
 do z = 1 to 3 ;
 r = ranuni (0) ;
 output ;
 end ;
 end ;
 end ;
run ;

data w2 ;
 set w (sortedby = x y z) ;
 by x y z ;
 where x = 2 and y = 1 ;
run ;

Here there are competing choices. The data set must be read with
BY variables X Y Z. The SAS supervisor knows that an efficient
direct sequential read is possible because of the SORTEDBY
option. In fact without the WHERE statement this would be the
choice of the supervisor. But with the WHERE statement present it
chooses the X index because of the more efficient subsetting. Of
course it will not be more efficient when most of the file has X = 2,
but the choice is based on a uniform distribution of X values. Can
the choice hurt other than efficiency? No. If the data set were really
sorted by X Y and Z when the index was made then Y and Z will
appear in order when using the X index. If the data set was not in
order when the index was made then both the index and a sequential
read would fail.

You have no explicit way to force the use of a particular index, but
you can find out which index is chosen by using the MSGLEVEL
option.

options msglevel = i ;

How can indexing hurt efficiency? First one must pay the price of
extra I/O to read the index file, so reading the full file with an index
will be slower that reading it sequentially without the index. Secondly
I/O is performed on pages which usually contain several records
(sometimes many). In sequential reading only one physical I/O is
performed for each page. When the file is read using an index, then
a new physical I/O must be performed every time the index file
indicates that the next record is located on a different page. Hence
the same page may be read many times when an index is used. So
why should use indexes? Because they can drastically speed up
subsetting when the subset is a small portion of the file. As an
extreme case look at what happens when all the wanted records
reside on one page. Now only one physical I/O is needed beyond
those need to locate the page. The system knows that it has found
all the required records. On the other hand without the index a
sequential search through the entire file is required to do the
subsetting.

Views

Another consequence of I/O engines is the ability to construct SAS
views. A view is instructions to construct SAS data. This idea
started with PROC SQL where it is important to be able to define the
data elements once, but provide different views for different uses.
Version 6.07 introduced the concept a data view. For example,
suppose PERM.SALES has one record per year holding monthly
sales amount for each salesman and you want to print out the
information in annual terms.

data sales / view = sales ;
 set perm.sales ;
 annual = sum(of mon1-mon12);
run ;

Proc print data = sales ;
 var salerep year annual ;
run ;

The DATA step does not read PERM.SALES and it does not create
a data set SALES. Instead it creates instructions for making SAS
data, a user engine. When the PROC PRINT executes the I/O
supervisor chooses the SALES view to generate data. During the
execution of PROC PRINT PERM.SALES is read and the data
created. One very practical use of views is in sorting wide data sets
where only a few variables are required. One would think

proc sort
 data = wide (keep= varlist)
 out = narrow ;
 by id ;
run ;

would be sufficient. But due to a design bug in PROC SORT, the
KEEP option is active only after the data has been sorted. Hence
one can often save time, space, and money by creating a view to
feed the right set of variables to PROC SORT.

8

The Macro Facility

How does the macro facility fit into the SAS supervisor’s job? The
SAS supervisor must parse the code from the input stack into
tokens and send these tokens to the appropriate subsystem. Let’s
call the manager of this part of the process the word scanner (WS).
The diagram below shows the three subsystems - the DATA step
compiler, the procedure parser, and the macro facility.

WORD
SCANNER

COMPILER PARSER

MACRO
FACILITY

INPUT STACK

&
%

Without the macro facility the code in tokenized form goes to either
the DATA step compiler or procedure parser. To allow macro code,
the WS had to learn one new trick - recognize tokens containing a
%-sign or &-sign and pass these tokens to the macro facility. In
addition it had to learn to take orders from the macro facility some of
the time in the same way that it took orders from the DATA step
compiler and procedure parser.

Let’s look at the creation and use of a macro variable. Assume we
are processing data collected state by state and writing programs to
work on these data. We might have

data &state ;
 set lib.&state ;
 /* more code */
run ;

First the WS picks up “%let” from the input stack of code. Since it
begins with a %-sign it goes to the macro facility. The %LET-
handler now takes over and asks for a token; hence “state” goes to
the macro facility even though it has no “%” or “&”. The process
continues to the semicolon; then the variable name STATE is stored
away with its value TX. Since the %LET handler finished its task
when it received the semicolon, no one is asking for tokens. WS
gets the “data” token on its own. Since the token was not requested
by either the DATA step compiler or the procedure parser, it is the
free key word “data” indicating the beginning of a DATA step; hence,
it goes to the DATA step compiler, which now asks for tokens. The
next token, “&state”, is not given directly to the DATA step compiler

since it begins with an &-sign. “&State” goes to macro facility which
looks up STATE and finds TX. This token is then put back in the
input stack to be found as the next token by WS. Thus when WS
goes to get the next token, it is TX and this is given to the DATA
step compiler. After the semicolon the DATA statement is compiled,
and the DATA step compiler asks for more tokens. Now “set” goes
to the DATA step compiler, and “lib.&state” to the macro facility,
where it is resolved to LIB.TX and put back on the input stack. Now
“lib.TX” is found and passed to the DATA step compiler. The
semicolon ends the SET statement and the DATA step compiler
does its thing as described earlier. And so on, until the step
boundary (either a RUN statement or an initial keyword “DATA” or
“PROC”) At the step boundary the SAS supervisor executes the
module.

The important thing to realize here is that the DATA step compiler
never sees macro code and knows nothing about it. On the other
hand the macro facility knows nothing about SAS code or how to
compile it. Finally the word scanner had to learn very little more to
make the whole process work. It is one of the best examples, that I
know of, demonstrating how to break up a complex process to be
managed by three separate little managers who know how to
interact, but know nothing of the other’s business.

How does a macro fit into this process? Using our previous example
consider the following code.

%macro edits (state = NJ) ;
 data edited.&state ;
 set raw.&state ;
 %if &state = TX %then
 %do ;
 /* special TX edits */
 %end ;
 /* more code */
 run ;
%mend edits ;

%edits (state = TX)

When WS encounters the token “%macro”, the token goes to the
macro facility, which hands it to the macro compiler. Now the macro
compiler asks for tokens and compiles until it runs into the
semicolon on the %MEND statement. This means everything is
stored away in a form for quick processing by the macro facility at a
later time. No resolution of macro variables occurs at this time and
no macro instructions are actually performed; the code is merely
prepared for later use.

After the macro compilation WS encounters “%edits” and sends it to
the macro facility which now calls up the compiled macro. The
tokens “(“, “state”, “=“, “TX”, and “)” cause the compiler to store the
parameter, STATE, as TX instead of NJ and to dump tokens from
the macro compiler into the input stack. Now “Data” goes to the
DATA step compiler as before. “Edited.&state” goes back to the
macro facility for resolution. The resolved form is dumped by in the
input stack to be found by WS and given to the DATA step compiler,
since the macro facility is not asking for tokens. The semicolon
goes to the DATA step compiler, for the same reason. The process
continues in this manner.

When the %IF instruction is encountered by WS and sent to the
macro facility, it will test whether &STATE resolves to TX or not. In
our case it does, so the macro facility will then dump the special
edits for Texas into the input stack for processing by WS. The
process continues until the RUN statement is encountered. At this
point the DATA step is finished compiling, thus it is executed by the

9

SAS supervisor. Had there been more code in the macro after the
RUN statement, the WS would have found this code and continued
to distribute it to either the DATA step compiler, the procedure
parser, or the macro facility as appropriate.

A common problem for macros that manage one or more steps is
the specification of the input data set. SAS usually assumes the last
created data set by default. How can we make use of the above
knowledge to make the macro behave the same way? Consider

%macro steps (data = &syslast) ;

%mend steps ;

At macro compile time, when the %MACRO statement is read, the
value of &SYSLAST is irrelevant since macro variables are not
resolved at macro compile time. The default value is the expression
'&SYSLAST', not the resolved form. Now when the macro is
invoked with

%steps ()

the parameter DATA is assigned the default, &SYSLAST, and now it
is resolved. Hence, DATA will have the value named by the last data
set created before the macro invocation.

The technique is handy, but one must be careful. Often one would
like the default for a parameter to be the resolution of some global
macro variable whose value is assigned at the beginning of the
program. Suppose we make the mistake of naming the parameter
and the global variable by the same name, say DATA.

%macro steps (data = &DATA) ;

%mend steps ;

At macro compile time there is no problem, but when the macro is
invoked with the default, there is a big problem. How should &DATA
be resolved? Since DATA is a parameter, it is local; hence &DATA
does not refer to the global variable DATA. Now the macro facility is
stuck with the conundrum, "Find the value of DATA by looking at the
value of DATA", which results in an error message.

Conclusion

You have probably learned more than you wanted, but it should help
to make you a better SAS programmer. You should now have a
better sense of the four basic times

1. SAS compile time
2. SAS execution time
3. Macro compile time
4. Macro execution time

and what the SAS supervisor is doing in each of them.

Prior to Version 6 the SAS supervisor played a much bigger role
during the execution of the DATA step. In Version 6 during DATA
step execution it only handles the LIST statement and the dump
tripped by _ERROR_ = 1. Both are done at the bottom of the
implied loop and not where they occur in the code.

The author can be contacted by mail at

Westat Inc.

1650 Research Boulevard
Rockville, MD 20850-3129

or by E-mail at

whitloi1@westat.com

References

Donald J. Henderson, (1983), “The SAS Supervisor,” Proceedings
of the Eighth Annual SAS Users Group International Conference,
924-931.

Tom Miron, (1996), “The Secret Life of the DATA Step,”
Proceedings of the Twenty-First Annual SAS Users Group
International Conference, 170-177

Mary G. Rabb, Donald J. Henderson, and Jeffry A. Polzin, (1992)
“The SAS System Supervisor - A Version 6 Update, ” Proceedings
of the Seventeenth Annual SAS Users Group International
Conference, 190-197.

SAS is a registered trademark or trademark of SAS Institute Inc. in
the USA and other countries.
® indicates USA registration.

